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NOMENCLATURE

subscript {1 {{cating alterbody
polynomial coetticients

prismatic coefficlent of semibody
prismatic coefficient of whole body
general independent parameter at eud
diametrr of offset of body
polynomial corresponding to d
diameter of flat face

ratio glven in Eq. [252]

‘'"quadretic" polynomial

subscript indicating forebody
""square root" polynomial

"cubic" polynomial

curvature

curvature at x =0

polynomial corresponding tec ko
curvature at x =1

polynomial corresponding to k1
length of body

relative axial position of maximum section m
polynomial

polynomial for restraining conditions

end radius

polynomial corresponding to r

end slope
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S(x) polynomial corresponding to s

X normalized axfal coordinate
X axial coordinate
Xm axlal length to meximum section

axial length of nose of parallel widdle body

Xt axial length of tall of parallel middle body

y normalized radius cr offset

z general function of offset of least-squares fitted body
z, general function of offset of actual body

a unspecified constant

g independent conditions

B unspecified constant

ﬁi conditions of restraint

Y unspecified constant
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ABSTRACT

Streamlined shapes,both two-dimensional and axisymmetric.are
analytically expressed by appropriate polynomials in terms of in-
dependent parameters. Permissible ranges of the independent para-

meters are examined with respect to selected geometrical constraints.

ADMINISTRATIVE INFORMATION

The work described in this report was sponsored by the Naval Ordnance

Systems Command (Code 054131) and funded under UR 109-01-03.

INTRODUCTION

Streamlined bodles may be defined as those bodies with negligible
drag due to separation of flow on the tail. Since separation 1s a vis-
cous flow phenomenon, its occurrence is governed by the Reynolds number
of the flow past the body. In fact at extremely low Reynolds numbers
all bodies are in eifect streamlined since they suffer no separation.
However, for the higher range of Reynolds numbers of practical interest,
it has been experimentally recognized that elongated bodies, that is,
bodies with rounded noses and tapered tails, act as streamlined shapes.
In this respect the terms elongated bodies and streamlined bodies have
often been used synonymously even though some elongated bodies have
proved to be poor streamlined bodies.

A general system is developed for analytically defining and deter-

mining the suitability of shapes for use as streamlined bodies, both two-
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dimensional and axisymmetric. Rounded, pointed, cuspecyand flat faced
ends, with and without parallel middle bodies, in any combination of

forebody and afterbody are included. Known streamlined shapes may be

modern methods of numerical calculation 2 by high-speed computers pro-
vide pressure distributions for bodies of arbitrary shapes quite readily

so this aspect is no longer a prime consideration.

The devising of streamlined shapes has had its preatest impetus
from the development of aircraft wings for two-dimensional figures and
ol dirigible bodies for axisymmetric figures. Analytic expressions
were first used for defining shapes from which pressure distributions
were determined. It was then decided to start wiih whact wer considered
suitable pressure distributons and determine the shapes afterwards. The
results are tables of offsets as given by the NACA alrfoll series for

two-dimensional figures and by Youw - ana Young % for bodies of revolu-

tion with rounded noses and pointed te¢ ls.

Since both the pressure distribution and the axial distribution of the

offset uf the body control the boundary-layer development leading to

1References are listed on page 83.

i
fitted into the system by least-squares fittings. Pclynomial expres- I
slons are used which lend t emseives most readily to automatic compu-
tation.
The shapes of elongated bodies have been devised by potential flow
methods such as source-sink distributions 1 in order to obtain knowledge :
of the flow field such as the pressure distribution on the body. However, :




scparation, the specification of pressure distribution elone does not

ensure the best streamlined body per se. The appreach of this paper 1s
to specify the geometrical shape of families of bodies whuse hydrodynamic
suitability can then be determined by further analysis such as that of

the boundary-layer development.

A notable family of streamlined bodies of revolution was developed
by Landweber and Gertler 3 which have rounded noses and rounded tails.'Qua-
dratic" polynomials are used in whiih the square of the radial offset
is a polynomial function of axial distance. What is significant is that
independent polynomials are related to the independent parameters deter-
mining the shape. Thils technique was presented earlier by Admiral David
Taylor 6 in his studles ¢f the mathematical description of ship hulls.
The method of factorial analysis is also used by Landweber and Gertler
for determining the coefficients of the independent polynomials., In
addition the limiting ranges of suitability of the independent para-
meters are analyzed by an envelope technique which was also previously

described by Admiral Taylor. 6 The "quadratic" polynomial developed

trom delineations of dirigible shapes and is presenied in a primitive

form bty Lyon.

The "square root'" polynomial consists of an ordinary polynomial
with the addition of a square ront term to accomodate rounded noses.
It was used in the specification of the 4 & 5-digit series of airfoill

8, 9 10 , 11

sections by NACA and by Kwik for rudder sections.

The method of this report follows in part the technique of Land-

weber and Gertler 5 with the initial difference of dividing the body
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into a fore body and after budy aud then normalizing the coordinate
system. The result is that there are only two independent paramecters
remaining to consider for ihe same degree of generality. Also both

the ""quadratic" polynomial and "squarc rovot" polynomial are subjected
to the analysis by division into independent polynomials; the factorial
analysis, where allowable, for determining the coefficients of the in-
dependent polynomials; and the envelope analysis for estublishing the
range of values of the independent parameters for suitability as desir-
able shapes. The results are analytical expressions for the cases of
rounded, pointed, and cusped ends, with and without parallel middle

bodies, in any combination of forebody and afterbody. The suitability

requirements are presented on charts giving permissible ranges of the
two Ilndependent parameters. I1f there wevre more than two remaining

independent parameters, such a simple display would not be possible.

The special case of the flat faced nose with hydrodynamic continuity

is finally analyzed by a "cubic'" pelynomial.




CGENERAL ANALYS1S

The shapes of families of bodies of revolution and of two-dimen-

slonal symmetrical bodies may be stated functionally as

-
.

a) {=1,

1
G5 g ”

[ %]
-

Y = {(X:a

where Y 1is the radius of the body of revolution or the offset of the
two dimensional body,
X 1is the axizl distance of the body measured {rom the nose,
o, are the parameter:s to be varied which specify the family such
as length L , maximum diameter or thickness D , etc., and
B. are the boundary conditions or restraints which give desirable
contours such as closed body conditions Y =0 at X =0 and

at X =1L, etc,

The complexity of the analytical analvsis is greatly reduced by con-
sidering the nose and tail portions separately in a normalized coordinate
system {x,y): v =0 2t x=0 and y =1 at x =1 . For the curved
body the split into forward and after bodies 1is made at the position of
maximum radius or thickness. For the parallel middle body the cuts are
made at both ends of the parallel portion of the body. For the flat

faced body an additional cut 1is made at the edge of the flat face.

For the completely curved body, ii the axial distance to the maximum

section is Xm , then the normalized coordinates become
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1
o|§
[
=

X
X = ;; for the forward portion [3}]
m
and
X = L - X for the after portion [4]
a L - Xm

For the parallel middle body, 1if X and Xt are the X-coordinates

H

cf the end of the nose and the beginning of the tail respectively, then

the normalized coordinates become

2Y
y =3 (5]
X )
X =3 for the nose [6]
n
and
x = ;L—:Ji for the tall (7]
Lo~ Xt

For the flat faced body the normalized coordinate y becomes

Y - D
Y= T o (8]

where Df is the diameter or width of flat face.

To achieve "hydrodynamic continuity" as contrasted with matnematical
continuity it 1s only necessary that the position, slope,and curvature
match at the junction of the forward and after bodies. Since at the

dy _
junction y =1 and ax 0 , it is evident that the position and slope

requirements are always met. The curvature condition however remains to




[29
3

be satisfled. At the junction the curvature is given by and in

[

normalized coordinates

X 2
= M __
kf (:1. - X :) ka (9]

m
or
m 2
kf=(1—m> ka [10]

where kf = curvature of forebody at x =1,

ka = curvature of afterbody at x = 1, and

xm
m=T o, relative axial position of maximum section.

For parallel middle bodies it is obvious that k. =k =20,

y = f(x;ai;Bj) (11}

no
—t
.
~N
-
.

where oy and Bj are now defined in normalized coordinates.

In this study only two independent parameters oy and a, are to be

considered for simplicity of analysis.

If a functional form like that of a polynomial is selected as
n=n
=Zaxn—l’() (12]
y nt T Tt
n=0

a resolution into linearly independent polynomials may be obtained like




that of linearly independent vectors such as

Y =2°1 a1 &4 2 By T,y (13]
i ]
or
y =2ci P )+ Q) [14]
1
where
Q(x) =2 3J. Pn,j(") [15]
]

This permits the effect of the controllable parameters oy to be

cbtained independently of each other,.

The independent polynomials may be determined by substituting con-
ditions ay and Bj into the general polynomials and evaluating the
polynomial coefficients by a solution of the resulting simultaneous
algebraic equations and then by a gathering of terms. Another method

is to use the factorial properties of polynomials which is 1llustrated

in the specific cases to follow.

Not all variations of the oy produce desirable shapes, Conditions

for zero values, values of one, maxima or minima, and inflection points

may be investigated. For example the condition for zero values of vy
y(x;al,az) =0, 0<x=1 [16]

may be studied as follows.

i
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I{ the 01 and Qz are now considered as variables and x as an

adjustable parameter, a line may be defined for each x . An eunvelope

to these lines may be developed which represents the boundary of regions

for values of Ql and a2 with and without an additional zero value of

y that at x = 0 . The envelope condition is given by
A
-~ T = 0
= y(:,al,az) Q

From Equations [16] and [17]}

(18]

a, = £,(x) (191}

A plot of 4 against a, for the range of values of x ,

0 £x 51, gives the envelope curve.




YQUADRATLIC POLYNOMIAL REPRESENTATION

GENERAL

The functional relation

y© o= a x [20]

is to be called the "quadratic" polynomial for want of a better name. It
is very suitable tor describing bodles of revolution for which volume is
an ilmportant consideration since it represents the axial distribution of
the cross-sectional area. 1t has the additional advantage of providing a
means of accommodating the analytical description of bodies with rounded

ends; something the ordinary polynomial cannot do.

In addition to bodies with rounded ends the 'quadratic" polynomial
may be applied to bodies with pointed ends and cusped ends. Of course
since the representations apply equally well to noses and tails, any
combination can be formed such as bodies with rounded noses and pointed

tails, etc.

Although any number of adjustable parameters o may be used, the
analysils is to be limited to two as being sufficient for describing
suitable figures. Two adjustable parameters for each partial body in

the normalized coordinate system Ls equivalent to six adjustable para-

meters for the whole body in the natural coordinate system.

10



ROUNDED ENDS

The adjustable paramcters Qi are

ql) r = radius of curvature at x =0 , r > 0

- [21]
d x
2 /x=0

r =+

Qz) k) = curvature at x =1, k,2 0

k, = - (& [22]

The signs of the equations for r and k1 are chosen so as to require

r and k1 to be positive for desirable shapes.

The boundary conditions B, are

3

St
rd
"
-
M
2
n
-
-
™~
w
S

Since there are five conditions in all, n = 4 .

The a and ﬁj are substituted into the polynomial, Differ-

entlating Equation [20] successively with respect to y gives

11




2 3, dx
2y (a, + 232x 4 383X 4 434x ) dy (26}
and
2 = (a. + 2a.x + 38 x2 + 4a x3) 935 + (28, + 0 + 12a 2 (gi : 25
1 2 3 T g * bagx 4 ) dy> [25])
Since a, ¥ 0, %f =0 at x =0 . This automatically provides a
rounded end. Then
al) a, = 2r
The other substitutions yleld
az) 282 + 683 + 1284 = -2 kl
81) a = 0
(26]
32) a +ta +a;+a = 1
e =
B3) a; + la, + 333 + 484 0

- PO [0 WA T T R IS LI P
Lq'_ldLLUll: <V )] Dy dolermninatils shiows that Lhe

a's are linear functions of r a&and k;, . Hence y2 is also a linear

1
function of r and k1 and may be written as
2 . ,
y' = r R(x) + klkl(x) + Q{x) [27)

where R(x) , Kl(x), and Q(x) are also polynomials of the fourth degree
in x . It is possible to determine R(x) , Kl(x), and Q(x) by first

solving for the a's from the simultaneous equations and then regrouping

12




teoms appiicable to Rex) Ki(x), and  Q(x) . Another mcthod is
developed in Reference 5 by utilizing the factorial propertles of

polynonfals as follows.

It 1s cevident that the relations fot 01 and ﬁj correspond to

a)) g{ y20) = 2r
- ]
o) S5yt = - 2k,
P 7
5 ,
B ¥y (0) =0 [28]

2
By ¥y () =1

4yl =0
By Gy (D =

Since the foregolng apply identically to r and k] ,» 1t 1s further

evident that

a,) R' (0) =2, K (0 =Q" (M =0

1 1
a,) K (1) = -2, R (1) =Q" (1) =0

B) R () =K (0) =Q(0) =0 {29]
By @@ =1,R1) =K (1)=0

33) R' (1) =K (1) =Q" (1) =0

2
where R' = %% ., R'" = Q_%’ etc.
dx

Evaluation of R(x)

Since R(0) = R(l) = R'(l) =R"(1) =0 and R{x) is a polynomial of

13

")




the fourth degree, R(x)

Since R'(Q) =2 , a

Then

R(x)

R(x)

Evaluation of . (x)

Since Kl(O) = K

factorially as

Since KI (1) = - 2,

Then

Evaluation of Q(x)

(2 =
i \0)

Kl(X)

1

]

may ve wrltten as

ax (x - 1)° (30)

“ 2k (k- )] (31]

K (1) = Ki(l) =0, Kl(x) may be written

Bx? (x - 1)? (32)

2
-x" (x-D [33]

Since Q'(0) = Q'(1) = Q"(1) = 0, Q'(x) may be written factorially

as

Q' (x)

= yx (x - 1?2 [34]

14




Then integrating

7 a9

n
< S
X 2% x”

=y (- Fe S

) +C 135]

With Q(0) =0 and Q1) =1, C=0 and vy =12 . Then

Q) = x2(3x% - 8x + 6) [36]

For rounded ends in summary

2

y© = R0 + kK (x) + Q(x) [27)

with
R(x) = - 2x (x - 1)3 {31}
K, () = - X (x - 12 [33]
Q) = x2(3x% - 8x + 6) [36]

As a check let r = k

Th.en

1 which are the conditions for a sphere.

(371

which 1s the contour of a sphere with center at x =1 .,

Graphs of R(x) , K, (x), and Q(x)

1

15

are given in Figure 1,

i e




Permissibtle Ranges of Parameters r and ¥k,

Not all combinations of r and k1 glve desirable shapes. Al-
though the fourth degree polynomial dJdoes not lend itself very easily
to peculiar shapes for positive r and kl , 1t 1s interesting to ana-

lyze the possible limitations in terms of simple criteria:

1. Zero coudition. y2 =0 for 0 <x -1,

Negative values of y2 would be meaningless.
2. Unity condition. y2 =1 for 0 =sx=<1,

Bulges above y =1 are undesirable.

9y _

3. Maximum or minimum condition. ix - 0 for 0 <x=sx1

No other maximum or minimum 1is to be permitted than at x =1 .
2

4. Inflection point condition. g—% =0 for 0 <x<1
dx

Inflection points ate undesirable on noses.
Zero Condition,

2
y = f(x;r,kl) =0, 0sx=<1 [38)

The envelope in r and k1 with x as the variable parameter is

given by

=220 [39)

The two envelope conditions, Equations [38] and [39], provide two
simultaneous equations in r and k1 which are solved by Cramer's rule to
give r(x) and kl(x):

16
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2, -
r = X_M% [40]
(x - 1)
2
k, = z__:_ﬁx_iEQ [41]
(x - 1)

The envelope curve 1s shown in Figure 2. Desirable values of r and

k1 are on the "inside curved" side of the envelope curve.

Unity Condition. The unity condition is that

y2 = f(x;r,kl) =1 0 =x <1 {42}

The envelope in r and kl with x as the varlable parameter is

given by
v (f - 1) =0 [43]

The two envelope conditions,Equations [42] and [43], provide two simul-

taneous equations in r and kl which are solved by Cramer's rule to give

(441
L2
kK, =< 1 - ;) (45]

17
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Eliminating x gives simply

The envelope curve 1s shown in Figure 2.

[46]

Desirable values of r and

kl ,» that is, without bulges, are on the "inside curved" side of the

envelope curve.

Maximum or Minimum Condition.

given by

The envelope curve In r and kl

given by

£ =0

The envelope curve is shown in Figure 2.

of the envelope curve is developed in Figure 3.

The maximum or minimum condition is

[47)

with x as the varliable parameter 1s

[43)

A better understanding

Each point on the

envelope curve rvepresents a tangent giving the locus of values of <t

and kl

than the maximum at x = 1 which prevails at all times.

are represented.

1

k. representing maxima or minima at two values of

X

which provide a maximum or minimum at each value of

Their point of intersection provides a value of «r

x other
Two such loci
and

Evidently from

any point in the region outside the envelope curve, two tangents may be

drawn to the envelope curve.

represents values of r and k1

18

Thus the region outside the envelope curve

giving two maxima or minima. The

i
|
l



region inside the envelope curve provides no maximum or minimum.

Finally there is only one maximum or minfmum specified by the envelope

curve itself.

The two envelope conditions, Equations [47] and [48], provide two simul-

taneous equations in T and kl which are solved by Cramer's rule to give r(x) and

k,(x) as
1 2
r = __§_~§§_~___ (49]
6x” - 4x + 1
2
ky = g 501
6x" - 4x + 1

Infiection Point Condition. The inflection point condition is given by

dy _
5 = 0
dx
For y2 = f(x)
20F" - f'2 =0 {51}
and the envelope condition
flli = 0 {52]

The two conditions provide two simultaneous equations in r and kl in

terms of x . Since the boundary conditlon leads to a quadratic relation,

19




Cramer's rule does not apply. VYor specified values of x

the two simul-~

tancous equations may be solved by direct substitution of one equation

into the other.

The results are shown in Figures 2 and 4,

20
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POINTED ENDS

The adjustable parameters a1 are

ul) s = slope at x =0, s >0

s =(§>Xi)x=0 53]

[54]

The sign of the equation for k1 is chosen so as to require k, to be

positive for desirable shapes.

The boundary conditions Bj are

B) x=0,y=0

32) x =1,

«
"
et

[55]

By x=1, 820

Since the "quadratic" polynomial automatically gives infinite slope at
x = 0 , an additional condition is necessary to give controlled slopes

at x = 0 . Hence the degree of the polynomial becomes five.

For ai)

21
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a. + 2a.x+ ... + na x
Z n

dy o 1 5
dx 2y (56]
. dy
Since y =0 at x =20, Ak F unless a = 0., For a = o,
%i {s indeterminate at x = O . Then by L‘HOpital's Rule
dy (& %2
L dx-(dx)x=0=s=_s- (571
x-0
or
Z .
s 2

oy then requires that

a; = 0
(58]
_ 2
a, = s
The other substitutions yield
2 = -
az) 2a2 + 633 + 12a4 + ,.Oa5 2k1
Bl) % =0
[59]
=1
82) a_ +a, + a, + a, + e, + a5
83) a; + 2&2 + 353 + 434 + 585 =0
2 2
y“ is then a linear function of s~ and kl or
2 2
y = 8" 8(x) + kK () + Q(x) [60])

22




It is evident that the relations for ai

a,) —

)
p—

-~

~
o~
o
~

L}
o

2

By gy ) =0

Since the foregoing apply identically to

evident that

a;) §'(0) = Kj(0) =Q'(0) =0

§"(0) = 2, K{(0) = Q"(0) =

uz) K{(l) ==2 , S"(1) = Q'(1)
B)) SO =K (0 = Q) =0
B Q) =1, s =K (1) =

By S'(L) = Kj(1) =Q'(1) =0

Evaluation of S(x)

Since $§(0) = 5'(0) = 8(1) = 5'(1) = s"()

polynomial of the fifth degree, S(x)

23

and Bj correspoud to

[61]

s and k it is further

1 2

|
o

[
o

[62]

]

0 and S(x) 1s a

may be written factorially as




2 3
S(x) = ax” (x = 1) [63]
Since §"{0) = 2, a=-1.
Then
2
S(x) = -~ n7 (x - 1)3 [64]

Evaluation of Kl(x)

Since Kl(O) = Ki(O) = KY(O) = Kl(l) = Ki(l) =0, Kl(x) may be

written factorially as

R GO = B (x - D) [65]
Since K;(l) =-2, B=-1.
Then

K G = - % (x - 1?2 [66]

Evaluation of Q(x)

Since Q'(0) = Q'(0) = Q'(1) = Q"(1) = 0 , Q(x) may be written

factorially as

2 . .
Q) = vt (x - )2

—a
o
~1

[o—

Then integrating
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3
XN
+ 3 J + C 168)

With Q) =0 and Q(1) =1, C =0 aud ¥y = 30 .
Then
3 2
Q(x) = x”(6x~ - 15% + 10) [69)
For pointed ends in summary
2 2
y© =87 S(x) + kK (0 + Qx) [60)
with
S(x) = - x2 (x - 1)° [64]
K ) = - x (x - 1)? [66]
Q(x) = x> (6x° - 15x + 10) [69]

Graphs of S(x) , Kl(x), and Q(x) are given in Figure S .,
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Permiccsible Kanges of Parameters 52 and )

Four conditions are to be applied: the zero condition, the unity

conditio., the maximum condition,and the inflection point condition.

Zero Condition. The euvelope curve 1is specified by

2 2
y = f{x3s ,kl)

1

(70]

"
(o)
o
WA
»

A
-

and
f*r=0 {71]

The results are

;SZ _ X (3x - 3) [72]

and

2
k]_: 3x7 ~ 10x +210 (73]
(x - 1)

The envelope curve is plotted iu' Figure 6.

Unity Condition. The envelope curve is specified by

26




1y

f-~1=0 [74]
and
f' =0 [75]
The relations are then
2 3% 4+ 4x 4 3
s =T [76]
x
K. = 3x3 - &xz ~ x + 2 [77)
1 2 !
b
The envelope curve is plotted in Figure 6.

Maximum or Minimum Condition.

The envelope curve is specified by

f' =290 {78]
and
f" =0 [79]
The results are
A 30x2
s” = 5 (80]
10x™ - 10x + 3
and
27




2
k. = 30« ~ Y™ (81]

1 10x2 - 10x + 3

The envelope curve is plotted in Figure 6.
Inflection Point Condition. The enevelope curve is snecified by

7

26€" - £'° =0 (82)
and
fl!l = 0 . [83]

The variation of s2 with kl is obtained numerically by direct sub-
stitution in solving the nonlinear simultaneous equations of the

envelope curve.

For x = C an indeterminate condition exists. By L'Hopital's Rule

2l

2 - 3s° - k, + 10
(d_l = i [84]
2 = e
dx” )& 0 A
and
3 1(15s% + 9%, - 70)
4y = L [85]
3 =0 s 1
dx

The boundary curve at x = 0 1is then

28




orx

The peint of tangency at x = 0 1is given by Equation [87] and

or 1552 + 9k, - 70

<

<i3_><>x -
dx3 =0
Then

s = % and k, =5 .

The envelope curve is shown in Figures 6 and 7.

29
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(87]

(88]

(89]
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ToTTm o s : - T
CUSPED ENDS
The adjustable parameters a, are
a) k_ = curvature at x=0 , k_ 0
1 o o
oy
Ko =% ( 2 ),Fo [90]

dx

az) kl = curvature at x = 1 , kl ~ 0

- .8y
Ky < 7 >x=1 (911
dx

The boundary conditions &8,

Bl) X
)32) x
83) x
84) X

As will be shown the cusped end

makes n = 7

are
=0, y=9
= -(ixz

0, Tx 0

[92]
=1’y=1
=1,¥ .o
Todx

requires two additional conditions which

1 o
For 82:
a, + 2a.x + 3a x2 + ... + na x-1
dy _ _1 2 3 n (93]
dx 2 (a,x + a x2 + .+ a xn)15
1 2 v n

dy . - -
ax 0 at x 0, a 0.

30




d 2,‘2 + 'jn’x + ... 4 na )\“72
Then —‘1 = L [94]
ox n-2.%
2('\2463)(4 ceedo8 X )
dry b 95
(dx )x—O "2 (95
For (911 =0 ,a =0 (96}
dx =0 2 7 )
For ay
2 n-2 dy
By eyt 2ax v en(n - e {dx)z
2" 2y (97)
dx
5 . -
bazn ¢ 1234x‘ + ...+ n(n - l)nnxn 2 (3n3x2 + 434x2 + 434)(3 ol * nanxn 1)2
= - [98]
3 4 n.k 3 4 n,3/2
2(53x +a,x 4 ...+ ax ) 4(a3x +8,x 4. +a x )
2 n-2 3 4 m 2 3 n-* 2
- . -
21683X + lZan + ... *+n(n - l)anx J(a3x *ax e v ax ) - (Bagx” e 4841 * ... +nax )
3 4 n,3/2
&4 (83)( + nl‘x + ... 4 anx ) 199}
n-3 n-3 n-2,2
2[6n3 - lZan + ... + n{n - l)anx ](a3 +ax 4+ .., +ax ) - (]aJ + aa‘x * .4 nax )
{100}
; xl/J RSN Y A . a un-8/3>3/2
4 (ay a,% Tt ax
2
d
Moxe0, SY .
dx
Let ’3 = 0
n-6 -4 -3.2
) 2[1204 + 20a5x + .. ¢+ 0{n - l)anx ](aa Ak b ...+ anxn ) - (Aah + Sasx + .. nnnx" )
ay
dx?
4(.& + 8gx + ...+ anxn-4)5/£
[101]

31




At

x =0

2
ﬂ_¥ = Zaa5
dxé
2
Qaq = k0

The other substitutions yield

. = - ?
QZ' 1284 + ZOa5 + 3086 hkl

64: &a4 + 585 + 686 =0

y2 is then a linear function of koz and k

2
7= ( .
y ko Ro‘x) + kl Kl(x) + Q(x)

1

{102)

[103)]

[104])

[105]

It is evident that the relations for a and ﬁj correspond to

i

n
o

(11) —3 y2(0)
L v%0) = ek

o) vy - - x

[106]




2
B ¥y =1

o

ay?
B % =0

Since the foregolng apply identically to ko and kl , 1t is
further evident that
. 1 ARl "

o) ko 0) = kl 0 =Q (0) =0

kYO = 63KV 0=V @ =0
a,) Ky (1) = -2 K (1) =Q" (1) =0
81) KO(O) = Kl(o) =Q(0) =0

[107]

B K ' (0 =K' (0) =Q (0) =0

[o]

K!(0) = K} (0) = Q'(0) = 0
B) Q) =1 ;K (1) =K (1) =0

B) K, (1) =K' (1) =Q 1) =0

Evaluation of Ko(x)

Since K (0) = K ' (0) =K " (0) = Kg" (0) = Ko(l) =K' @ =

K" (1) =0 and K (x) 1is a polynomial of the seventh degree, K (x)

may be written factorially as
K GO = ax® - 13 [108]

Since Kolv (0) =6 ,a=-~1/4,
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Then
. 4 3
ko(x) = - dx (x - 1) [109]

Evaluation of Kl(x)

Stnce K (0) = K '(0) = K "(0) = K, (0) = xliv © = K (1) =

Kll(l) =0, Kl(x) may be written factorially as

K, () = B (x - 1)2 (110]
Stnce K,"(1) = -2, B=-1.
Then
5 2
KGO = - % (x - 1) [111)

Evaluation of Q(x)

Since Q'(0) = Q"(0) = Q" (0) =Q'V(0) = Q'CL) = Q') =0 ,

Q'(x) may be written factorlally as

Q'(x) = Yx4 (x - 1)2 [112]
Then integrating
x7 XG x5
Ax) = Y(F -F+5)+C [113]

With Q(0) =0 and Q(1) =1 , C =0 and y = 105,
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Then
5 2
Q(x) = x” (15x~ - 35x + 21) [114)

For cusped ends in summary

y2 = koz K 00 + kK (1) + Qo) [105]
with
K () = - it x - 1) [109]
K G = - % (x - 1? [111]
5, .2
Qx) = x> (15x% - 35x + 21) [114]

Graphs of Ko(x) , Kl(x), and Q(x) ave given in Figure 8.

Permissible Ranges of Parameters ko and k1

As betore four conditions are to be applied: the zero condition,
the unity condition, the maximum and minimum condition,aad the inflec-

tion point condition.

Zero Condition. The envelope curve is specified by

£=0 (115)
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and

The results are

and

fl

Kk 2 _ 4x”(5x - ;2
x -1

K

10x2

- 28x + 21

x - 12

The envelope curve is shown in Figure 9.

Unity Condition, The envelope curve is specified by

and

The results are

L2 40xY 4+ 8K + 9x2 + 8x + 5)
*o 4
X
and
2
" 10x” - 8x =~ 5x" - 2x" + 4
1 e

[L16])

[(117]

[118]

[119]

{120]

[122}




The envelope curve 1s shown in Figure 9,

Maximum or Minimum Condition. The envelope curve is specified by

i'"=0
and
f'" =0
The results are
2 420x>
ko = 2
21x7 - 28x + 10
and
210(x - 1)2
kl =

The envelope curve is plotted in Figure 9.

Inflection Point Condition. The envelope curve is specified by

2f£" - f'2

37

21x2 - 28x + 10

0

[123]

[124]

[125]

[126]

[127]

Y )

————



%

and

f'" =0

[128)

The variation of koz with k1 is ootained numerically by dirsect

substitution in solving the nonlinear simultavzeus equetions of the

einvelope curve.

The results are shown ir F. ,are 10. The various regions giving the

number of inrflection points are delineated in the same figure.
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"SQUARE ROOT" POLYNOMIAL REPRESENTATION .! |
GENERAL
The functional relation
n=n
y = a)fxl§ + z anx“ 1129]
n=0
1s to be called the '"square root" polynomlal for want of a better name.
It is suitable for describing two-dimensional shapes with rounded ends.
Of course without the square root term an ordinary polynomial
remains.
The same analysis procedure used for the '"quadratic' polynomial is
to be applied where possible to the "square root" polynomial for the
same cases: rounded ends, pointed ends and cusped ends.
ROUNDED ENDS

The adjustable parameters c

[ are
al) r = radius of curvature at x =0 , r > 0 .
_ !
r=+—3 {130}
() |
dy2 =0

v
(=

a,) k, = curvature at x =1, k




L

The signs of the equations for r and k1 are chosen so as to require

r and k1 to be positive for desirable shapes.

The boundary conditions B, are

[

61) x=0,y=20
32) x=1,y=1 [132]
- dy _
33) x=1, P 0
Since there are five conditions in all, n =3 .,
The ai and Bj are substituted intc the polynomial. For a
Differentiating Equation [129] with respect to y gives
= % 5 2, dx
1= (%a%x +oa; + Zayx + 333x ) dy [133]
or
%
dx X
== n . [134]
dy 6] 3/2 S/2
%a% + a;x + Zazx + 3a3x
At x =0, %% = 0 which ensures a rounded end, Differentiating Fyuation
[133] with respect to y gives
_ -3/2 y o dx (2 -% 2 QE{
0= (—%a%x + 232 + Gasx)( dy) + (%a%x + a, + 2a2x + 333x ) dy2 [135]
or
(5a, + a x% + 2a x3/2 + 3a xS/z)(%a + a x% + 2a x3/2 + 3a x5/2)2
1 _ X 1 2 3 x i 2 3 [136]
d2x ¥a, - 2a x3/2 - 6a xS/2
= % 2 3
dy
40
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At x =0
r = %akl
or
a =  2r
az) -%a% + 232 + 6a3 = - k1
B) a, =0
32) ay +ta +a, +a;= 1
34) %a% + ay + 2&2 + 333 =0

The presence of the square root term prevents

analysis,

The solution as simultaneous equations in the

y = & 2r R(x) + k, Ky (0 + Qx)
with
— X 2
R(x) =~/ x - g Gx" - 10x + 15)

Kl(x) = - %x (x - 1)2

Q(x) = % (x2 - 3x + 3)

are shown

Graphs of R(x) , Kl(x), and Q(x)

41

[137]

the use of the factorial

a's produces

[138)

{139}

[140]

{141}

in Figure 11,




Permissible Ranges of Parameters r and kl

For the same reasons as the "quadratic'" polynomial the conditions
to be considered are the zero condition, the unity condition, the

maximum or minimum condition,and the inflection point condition.

Zero Condition, The envelope conditions are

y = g(x;r,kl) =0 0 =x=s1 [142]
and
g' =0 [143]
The results are
Vo = R [144]
5x 7 +x -5
and
- 36x 2 4 205 2 102 4 %% - 12k 4 15
ky = -1/2 -3/2 (L4s]
2(x - 1)(5x - X + x -~ 5)

The results are plotted in Figure 12.

Unity Condition. The envelope curve is specified by

42




(146)

[147]

[148]

[149]

[150]

g-1=20
and
g' =0
The results are
) 2( 1)3
S VT I 3
- + 5x + 5x
and
-1/ 2 2
oG D@ 20x 2 4 7 10 - 15)
1 2(-x1/2 + Sx3/2 . X3 ~ 5x2)
The eunvelope curve is plotted in Figure 12.
Maximum oxr Minimum Condition. The envelope curve is specified by
gt =0
and
8” = O
Then
SO - 26(x - 1)43!?
= I-) I .
1 - 12x 4 15x2 + 125/ 7% - 3ex°7 % 4 20x°72
and

[N |




W e 6(x - 1) (-1 4 5%+ /2 - 5x3/2

1 772

2
1 - 12x + 15x° 4 12x - 36x5/2 + 2(‘»:3/2

The envelope curve is plotted in Figure 12,

Inflection Point Condition., The envelope conditions are

g|l = O
and
glll =0
The results are
Nf-' _ 16x5/2
2r = 573
8x - Sx + 2
and
C206°7% - sk 4 3)
ky = 5/2 :
8x™'7 - 5x + 2

The envelope curves are plotted in Figures 12 anc 13.

POINTED ENDS

The ordinary polynomial is utilized

[153]

[154]

[155]

[156]

[157]



The adjustable parameters a, are

al)s = glope at x =0, s >0

G = ( % )x=0 (159)

az) kl = curvature at x =1 , k1 20
d2
K =~<—l)x_ [160]
1 2 =1
dx

The sign of the equation for kl is chosen so as to require kl to be

positive for desirable shapes.

The boundary conditions ﬁj are

Bl) x=0,y=0
82) x=1,y=1 [L61]
X = gz =
33) * 1, dx 0
Since there are five conditiongs in all, n = &4 .
Substitution of ai and ﬁj into the polynomial produces
al) a) =s
az) 232 + 6a3 + ]2a4 = - kl
Rl) a = 0 [162]
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+ a, +a,+a, =1}

By a,+ a  +a,+a;ta,

33) a, + 282 + 333 + 454 =0

y 1s a linear function of s and kl or

y(x) = s 8(x) + k; K () + QM) [163]

The relations for ay and Bj correspond to

a) y'(O) =s
ay) Yy = -k
By y(@ =0 [164]
By y'(1) =0
It is evident that
al) §'(0) =1 ; Ki(G) =Q'(0) =0
@) KJ(1) = -1 ;8"(1) = Q1) =0
B)) s(0) =K(0) = Q(0) =0 [165]
52) Q(1) =1 ; s(1) = Kl(l) =0
By s') =KD =Q' M) =0
Since S(0) = S(1) = S'(1) = §"(1) = 0, s(x) = ax(x - 1)° .
Since S$'(0) =1, a=-1 and
3
S(x) = - x(x - 1) [166]
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2 9
Since Kl(O) = Ki(O) = Kl(l) = Ki(l) =0, Kl(x) = Bx(x - 1T

Since KY(I) =-1, B=1% and

S R S th

Since Q'(0) = Q' (1) = Q'(1) =0 , Q' (x) = yx(x - 1)° .

Since Q(0) =0 and Q(1)

1, vy=7 and then

i

Q(x) x2(3x2 - 8x + 6)

In summary for pointed ends

y = 3 S(x) + k1 Kl(x) + Q(x)
S(x) = - x(x - 1)3
K GO = - b (x - 1)

 Qx) = x2(3x2 - 8z + 6)
The polynomials are plotted in Figure 14.

Permissible Ranges of Parameters s and k1

Four conditions are to be considered: the zero condition, the

[167]

[168]

[163]

[166]

[167]

[168]

unity condition, the maximuwn or minimum condition, and the inflection

point condition.
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Zero Condition., The envelope curve is specified by

g =0 1169}
an.i
g' =0 (170}
The results are
5.2
s = M_—-—%)- [171]
(x -1
and
2(x2 - 4% + 6)
k) = X > [172]
x -1
The envelope curve is plotted in Figure 15.
Unity Condition. The envelope curve is specified by
g-1=90 [173)]
and
'=0 [174]
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The results arc

2(1 +

n
N

K

and

k, = 2(1 -

The envelope curve is plotted in Figure 15,

Maximum or Minimum Condition. The envelope curve is specified by

g' =0
and
gH:O
The results are
12x2
s = Y

and

2
6x” - 4x + 1

The envelope curve is plotted in l'igure 15.
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(175])

[176]

1177]

[178]

[(179]

[180]




Inflection Point Coadition.  The envelope curve is speciticd by

g' =0
and
g'" =0
The results are
s = 4(3x§ -3x + 1)
6x” - 8x + 3

and

A
K. = —t20x - 1)

! 6x2 -8 + 3

For x =0 the boundary line given by g" =0 1is
6s + kl ~-12=0.
The envelope curves are shown in Figures 15 and 16.

CUSPED ENDS

The ordinary polyromial is5 utilized

50

[181]

1183]

[184]

[185]
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y = z a, " [186]
n=
The adjustable psvameters o, ere
al) k = curvature at x =0 , ko 0
2
k= (<X ;)xzo [187)
N dx”

curvature at x

<
d7y

o= (S s
dx

H
-t
=
]

The boundary counditions Bj are

Bp) x=0,y=0
B) x=0,% -0
- x (189]
= 1 =
b pd 91 =
By x=1,4=0
Since the.. “re siIxX conditions :n ati, nu = 3 .
Substitution of Qi and ﬁj into the polynomial produces
Ql) 232 = ko
2 = -
023 ?.a2 + 633 + 1_a4 + 20a5 kl
By a, =0 {190}

Sttt i < sttt el i




The relations for

[

1t is evident that

al =0
) S =
53 a + 8 +oa, + a, +a, t a8,
24 =
a + 2a, b 3a, + Laa 4 585 0
y 1is a linear functicn of ko and k1 in
’ = 1 N &Y P v Y .
y(x) Ky ko(h) + k1 Ll(x_ + Q(x)
L and #j corraspond to
a7 Yy =k
"' - -
az) ¥y k1
31) y(@) =0
B y'(0) =0
By vy =1
1 ==
By y'() =0
T \I = M ' = " =
KU =15 Kk (0) = Q' =0
" = - . 1" = " =
kM) = - 1K) = Q) =0

KO(O) = KL(O) = Q(0) =0
K, (O = K, '(0) = Q'(0) = 0
Q1) =1 ; Ko(l) = Kl(l) =

KD = KT = Q) =9

52
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191}

[192]

[193]}




N Lid - ) - ’ 11 . ] 1 - ’ [ 4 =
Since K _(0) = K '(0) = K (1) = K '(}) = K ' 0,
2 3
Ko(x) = ax (x - 1) [194]

Siuce KO"(O) =1, a=% and

2 3
Ko(x) =kx"(x - 1) [195]

"C < S = K" = Il = K. " =
Since kl(O) Ll )] kl'(O) Ll(l) kl (m 0,

K GO = B (e - 1) [196]
Since Kl"(l) =-1, 8+ -3% and
3 2
K () = - b (x - 1) 197]

Since Q(0) = Q'(0) = Q'(1) = Q'(1) =0 ,

Ev]

\‘xz(x - 1" [198]

Q' (x)

Stnce Q) = 3 ard (1) =1 , vy =30 and

x + 10) . {195}

fo
[ 1]

Qx) = x3(6x2

In summary
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y = ko K () 4 kK (x) 4 Qux) {191)
e 2 .3
kotx) = Ax (x - 1) [195]
3 2
K;(x) = - 3x"(x - 1) (197]
3 2
Q(x) = x”(bx” - 15x + 10) [199]

These are plotted in Figure 17.

Fermissible Ranges of Parameters ko ani kl

Four conditions are to be investigated: the zero condition, the

unity condition, the maximum or minimum condition, and the inflection

point condition,

Zero Condition, The envelope curve s specified by

g =9 (200]
and
g' = 0 [201]
The results are
2 2 3 5
Kk = - _E.QJL;_El [202]
° (x - 1)

and

54




Unity Conditijon.

and

The cuvelope curve is plotted in Figure 18.

The 1esults are

and

Ma

The envelope curve is specified by

9
2(3x7 + 4% + 3)

k =
(o]

2

4

X

2
C2x - D Gx 4+ 2)
= 2

X

The envelope curve 1s shown in Figure 18.

ximum or Minimum Condition,

The envelope curve is specified

55

[203]

[204]

1205]

[206]

[207]




8' = [208]
and
g” = ( ‘2091
The results are
2
60x
ko = 7 [210]
10x™ - 10x + 3
and
60 ( 1)2
K, = (x - [211]

10x2 - 10x + 3

The envelope curve is plotted in Figure 18.
Inflection Point Condition. The envelope curve is specified by

gt =0 [212]
and

g" =0 [213)

The results are

~ 20x%(6x° - 8x + 3) .
Ko ~ T3 .7 (216}
- 20x + 40x7 -28x" 4+ 8x - 1
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and

o 3 2
200 = DY (-6x7 + 10x" - 5% 4 1)

- 2Ux& + 40x3

kl =

-
8
—
Wi
L

.2
- 28x7 4 8x - 1

The emvelope curve is shown Ln Yigurce 19,
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PCCBRILY PO YNMITAL REPRESLNTATTON

FOR FLAT VACLD MGSES

Ta actiieve “hydrodynamic continufty' at the cdge of

vhe Llat

faced nose, zerv curveture s regalred In addttion to Infinite slope.

1"

A Veubice" polynomial achleves Liidls, namely,

3 z 3
s P(x) = g R . X .
y P(x) 2 t alx 4 a, X A ajh 4
Since
]
dx - K
dy a, + 2a.x 4 3a x2 +
1 2 3
and y =0 at x =0
(:QE :) = Q (Infitnice slope)
3y =0 nftr ¢ slop
Also since
['dx \2
2 . - (2 05 M 225
9;1( ) Oy (._.a2 4 034X + ...)\ Iy }
27 2
dy a; + 282x + 333n 4
and a r 0
.2
(.i_%_;L=O = ( (zero curvature)
y

There is one adjustable parameter ay
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a,r kK, w curvatute at. x = |}

“1 ! 1

by = - ( 4y )‘,l [221)
A

The boundery conditions B are

i

BY x» 0, ved
B)Y »=1,y=1 [222]

3y x=1, %o

Sfunce there are four conditions In all, the polynomial In x 1s

cubfcg,

The @) and ﬁj arc substituted into the polynomfal to give

a ) 2a, + Ga, = = 3kl

1 2 3
B)Y a =20

b [223)
B:} ao “+ nl +4 32 + 33 = ]
ﬁ3) 9 4 232 + 333 =0

The form of the "cubic" polynomial 1s then
3
y o= kl kl(x} 4 Q) 1224]

The relations {or a and B, coriespend to
J

s e

PR PRI




w
—
~—
b
o~
<
~
W
[

Alsc it 1s evident that

a) Ky = -3, Q)

Bl\ Kl(O)

Bz) Q) =1, K (1) =0

G{0) =0

By K1) = Q@) =0

Evaluation of Kl(x)

Since Kl(O) = Kl(l) = Kl(l) =0

= ()

Kl(x) = ax(x - 1)2
' . 3
Since Kl(l) =-3,a=-3" Then
= .3 _ 12
Kl(x) =-3 x(x - 1)

Evaluation of Q(x)

Since Q"(1) = Q'(1)

]
o

Bex - 1)°

fe)
]
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[227]

[228])

[229]




and

Q= T + C [230]

Since Q(0) =0 and Q1)

b}
—
=™
i

3 and ¢ =1

Then

Q=(x-1°a1 (231]

The independent polynomials are plotted in Figure 20.

Permissible Ranges of kl

Zero Condition.

P eheok) S0, 0sx sl [232]

The boundary condition h = 0 gives

o 2l - U3+1l

k 2
3x(x -~ 1)7

i

[233]

Yor x=0, k is indeterminate and by 1.'Hopital's Rule

k, = 2 [234)

From the plot of k1 against x 1in Figure 21 it is evident that the

peruissible range 1s
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Unity Condition.

hix,k) =1

The boundary condition is then

Then

-2 21
k1“3(1 x>

in TFigure 21 it is evident that the

From the plot of k, against x

1

permissible range is

Maximum or Minimum Condition.

except at x = 1 . Then

{235]

[230]

[237]

[238}

{239])

[240]




The boundary condition 1s then

h'
=0 2
7 0 [242]
which produces
2(x - 1)
R G WA 4
R R e [263]
Yrom the plot of kl against x  1un Flgure 21 it {is evident that the
permissible range is
0 - kl 2 [244])
Inflection Point Condition,.
d2
VoL . )
—5 <0 , < x 1 {245)
dx”
or
]} " ’)} |2 0
- <
3hh 5;3 [246]
9h~’
For h >0

(positive condition)

3hh" - 2h'2 = O

[(247]

vhich reduces to
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2
(x - 1)2k1“ +20x - Dk = Alx - 1) [248)

or

k. = 2 - 3x + xy/ bx -~ 3
>
1 (x -~ 1)°

[249])

The permiccible range is kl > 0 and with the zero condition of kl s 2

the combined permissible range is

0 <k, <2 {250]

as shown in Figure 21.
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GLNLRAL

Known shapes may be approximately expressed in ''quadratic"

and "square root' polynomials by a least squares fit. 1f

z = y2 for "quadratic' polynomials
or
z =y for '"square root'" polynomials
then in general
z =4 D(x) + ky Kl(x) + Q(x) [251]

where d and D(x) vrefer to the appropriate type of figure. For
example for 3 rounded nose shape d = r and D(x) = R(x) . Since

the whole body is to be fitted, both fore and after bodies are to be

consldered which would mean determining four coefficients df s klf ,
da' and kla by & least squares fit. The subscript f refers to
the forebody and a to the afterbody. MHowever since k ; and

k are related by

la

2
(e -
ke = (T8 b, [252]

o fi=
=

la
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only three independent coefficients have to be determined,

Tn general a least squares fit requires that
2
S(z - zl) dx be minimized [253]

where zy represents the body shape to be {itted. Differentiating
with respect to the coefficients to be determined produces three

simultaneous algebraic equatlions which are easily evaluated:

1 1
[I D dx ] d, + [ kalfdx ] kl = Ionzlfdxf - IODfodxf [254)
1 1 1
[ D dx ] d + [ IoDakladx ] kl = IoDazladxa - IoDaQadxa [255]

Dlefdxf]d +[ID]\ dx;‘d +[IKlfdx +e_[l< dx]k

[256]
1 1

1
= IoKlf zpgdxg + ) Ky a2 09%, - IoKlfodx fo 12% %%,
BODIES OF REVOLUTION

In the normelized coordinates of this paper all ellipsoids
are transformed into spheres so that 1t = k1 =1 which is plotted

in Figure 4 for bodies with rounded ends.

-~

An ellipsoid-like body was developed by Munzner and Reichardtl“
which has an almost constant pressure distribution. The Reichardt body

is expressed as
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()

where a and b are the semiaxes and ir normalized coordinates as
2 2,
(x-1"+y =1 [258]
For a least squares fit
1.2
z. = [x(2 - x)] [259])
A least squarcs fit by rounded end "quadratic'" polynomials gives

1.344

"~
1

and

=
I

1.085

which 1{s plotted in Figure 4.

Other known todies of revolution may be fitted and plotted in

Figure 4 for comparison.

TWO-DIMENSIONAL SHAPLS

In normalized coordinates all ellipses have been transformed

into a circle
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vy o= 2x - X [200]

and tor least square fittin:

z, = (2x -~ XE)E [201])

A lenst squares flt in “gquare root" polynomials for rounded cnds

glves

A 2r = 1.425

and

which {s plotted in Figure 13.

A long time favorite streamlined shape for propeller struts
was the Navy Standard Strut13 (NSS) which has a rounded nose and a

pointed tail. A least squares fit gives for the nose

+/ 2r = 1,610

and

k. = 0.713

and for the tail
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s = 2.U82

and

which arce plotted fn Vigures 13 end 10.

1
The Navy Standard Strut was superseded by the B shape 3
which Yas a8 rounded tall. A least squares it vields for the nose

portion

.1

I = 1,414

and

and for the tail portion

~

W o2r = 0.389

1

and

k. = 1.124

whiclh are plotted in Fipgure 13.
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PRISMATLC COLPELGILNT

The fulluess ot a shape is plven by the prismatic cocfticlent
which 15 the ratis of the volume ol the body to the volume ol a prism
having the maximum cross-sectlon arca and the length o) the body.
lor a body of revelutlon the prism s ruepresented by a oylinder ol

maximum diameter and length of the Lody .

The prismatic coetflelent of thie semlbodies ef this report is

given by
. 2 e
LP = IO y T dx {202)

The prismatic coefficient of the whole body Ls given Ly

0
n

- O 4 (1 ~m) cf [203)

P Py a

where the subscripts f and a rofer to the forebody and afterbody

respectively.

The utility of the quadratic polynomial in computing the pris-

matlc coefficient is evident {from
1 1 1
c, = djo D(x)dx + klj'o K (0 dx + .[0 Qdx [264]

For the rounded end

=

[265]

1
wl =
O —
+
it
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aind Lhe poluted wnd

: k1 1
s
T o0 Wt [206]
aud the casped end
koz k] 3
Cp T 1120 T16sT B (2671

Lincs of coustant Cl‘ are plotted in Vigures 4, 7, and 10,
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